

Symbology Development for Head-down Displays (SD-HDD) Proposed Experiment

Investigator: Mamad Takallu

Co-investigator: Doug Wong

Outline of Presentation

- Summary of Preliminary Literature Review
- Goals and Objectives
- Research Performed to Date by SVS-GA Team
- Independent Variables (Candidate Symbology Concepts)
 - Terrain Portrayal Concepts
 - Guidance Symbology Concepts
- Proposed Scenarios
 - For Roanoke, Virginia KROA
 - For Juneau, Alaska PAJN
- Test Equipment and Assumptions
- Dependent variables
- Hypothesis
- Experiment Schedule

Motivation

- No terrain
 - NASA/FAA/AGATE sponsored experiments of HITS with mixed type of pilots but no Terrain Portrayal (TP)
- Terrain, Fixed Symbology
 - European research (Delft, Muenchen and Darmstadt):
 - Mostly proof of concept experiments, HUD, HMD, mostly professional pilots, focus on commercial and business type aircraft
- Fixed Terrain, Fixed Symbology
 - Military experiments:
 - Most experiments with HITS, EVS, HMD, and HUD
 - Some experiments with HITS and TP in HDD
 - Highly trained military pilots
- NASA SVS-CAB experiments:
 - Focus of experiments on commercial and business type aircraft
 - Focus on CFIT not LVLOC

LVLOC Displays

Aviation Safety Program: Synthetic Vision Systems – General Aviation

- Airspeed, attitude, altitude, heading, and vertical speed indicators, turn/bank coordinator, and engine RPM
- Replace AI with horizon line, pitch grid, roll scale with sideslip wedge and a digital heading,
- Velocity vector with sideslip flag and acceleration caret.

- Fixed FOV=50
- DEM= 3 arc-sec
- Texturing, elevation based
- Otherwise same as EAI

TP-HDD Displays

Aviation Safety Program: Synthetic Vision Systems – General Aviation

Baseline Round Dials ——

- Airspeed, attitude, altitude, turn coordinator, directional gyro, and vertical speed indicator
- For approach scenario
 - Localizer/Glide slope deviation indicators
 - No tunnel

- Integrated Information on PFD
- Velocity vector with sideslip flag and acceleration caret
- Air data tapes
- FOV= unity, 30, 60, 90
- Horizon line, pitch grid, roll scale with sideslip wedge and a digital heading
- Tunnel for approach scenario

- Terrain Portrayed
- FOV= unity, 30, 60 and 90
- DEM= 1, 3 and 30 arc-sec
- Various texturing
- Otherwise same as BSBG
- Tunnel for approach scenario
- With and without tunnel on CCFN30 for approach scenario

Goals and Objectives of the Experiment

- Establish interaction between guidance symbology and terrain portrayal (TP) concepts on a Primary Flight Display (PFD) based on:
 - Pilot performance
 - Pilot workload
 - Pilot Situation Awareness (SA)
 - Rare event measures
- Develop recommendations for SVS-GA PFD symbology
- Demonstrate realistic operational concepts
 - Applicable to Small Aircraft Transportation Systems (SATS) operations

Proposed Independent Variables

Aviation Safety Program: Synthetic Vision Systems – General Aviation

■Following terrain portrayal concepts are being considered:

- **1. Simple:** Baseline PFD, no terrain (BSBG)
- 2. Minimal TP: 30 arc-sec DEM, Constant Color with Fish Net (CCFN30)
- **3. Medium TP:** 3 arc-sec DEM, Elevation based Generic (EBG3)
- **4. Complex TP:** 1 arc-sec DEM, Photo Realistic (PR1)

Following symbology concepts are being considered:

- 1. Simple: Raw data (CDI), no-tunnel
- 2. Minimal: Raw data, add flight director, no-tunnel
- **3. Medium:** Unconnected box tunnel (Chelton) with guidance, TP-HDD
- **4. Complex:** Tunnel with follow-me airplane; NASA Crows-Feet Tunnel
- **5. Most Complex:** Rail-sliding box tunnel with gamma predictor; Rockwell Collins/TU Delft

1- Course Deviation Indicators Only

2- Pitch/Roll Flight Director

3- NASA TP-HDD w/ Chelton Tunnel

4- Crows-Feet Tunnel with Ghost Plane

Crows-Feet depict the 4 corners of tunnel cross-section

Ghost plane will be 5 seconds ahead

5- Rockwell Collins

Series of 300 ft by 300 ft squares connected by lines to form a pathway

Guidance box (magenta) is 5 seconds ahead

Proposed Scenarios

- Pilot Group 1 (KROA):
 - SVS RWY 24 approach (10 minutes):
 - Easy segment Enter 1 NM before Initial Approach Fix (IAF)
 - Difficult segment Descending 90° turn at 6° slope to fly a curve approach
 - Easy segment Final Approach Fix (FAF) to Minimum Descent Altitude (MDA), 3° slope
 - Missed Approach RWY 24 and Hold (10 minutes)

Proposed Scenarios, continued

- Pilot Group 2 (PAJN):
 - SVS RWY 8 Approach (10 minutes):
 - Easy segment Enter 1 NM before Initial Approach Fix (IAF)
 - Difficult segment Descending 90° turn at 6° slope to fly a curve approach
 - Easy segment Final Approach Fix (FAF) to Minimum Descent Altitude (MDA), 3° slope
 - Missed Approach RWY 8 and Hold (10 minutes)

Proposed Scenarios, continued

Aviation Safety Program: Synthetic Vision Systems – General Aviation

Possible Rare Event to invoke a CFIT

 Intentional Obstruction (tower/structure) in the path to simulate database error, out-the-window visibility below marginal VFR

Other possibilities

- Tunnel abnormality
 - Land short
 - Land long
 - Into terrain
- OR other Abnormalities
 - Pitot static system errors
 - Engine out, emergency landing

Assumptions and Test Equipment

Aviation Safety Program: Synthetic Vision Systems – General Aviation

Similar to TP-HDD Set-up:

- A Cessna 172 will be simulated in GAWS
- 8" VGA monitor (AVIDYNE?) as the HDD (PFD)
- MX-20/GX50 as Navigation/Multifunction Display
- FOV = unity, 30, 60, and 90
- Out of window (NASA Research Terrain Databases)
- Improved TP-HDD type aircraft state information

• Follow-up flight experiment using NASA Langley Lancair

Dependent Variables

Aviation Safety Program: Synthetic Vision Systems – General Aviation

Pilot/vehicle performance measures

- Pilot control inputs, path errors and aircraft performance data
- Any special rare event measures

• Pilot physiological measurements

- Skin Temp
- Pulse rate

• Qualitative pilot questionnaires

- NASA TLX, SART, SASWORD, CH
- Audio/video recording of comments during the runs
- Exit interviews

Hypotheses

- Adding terrain to PFD will improve pilot SA across all guidance symbology concepts
- Low fidelity TP concepts will favor complex guidance symbology, Rockwell Collins tunnel
- High fidelity TP concepts will favor simple guidance symbology, flight director or Chelton
- Pilot performance will be improved with tunnel concepts

Proposed Schedule

- Simulation Software Requirement Document (10/02)
- Simulation Hardware Requirement Document (10/02)
- Flight Software Requirement Document (11/02)
- Flight Hardware Requirement Document (11/02)
- Flight Critical Design Review (12/02)
- Simulation Software/Hardware Checkout (02/02-03/03)
- Simulation Experiment (04/03)
- Flight Test Software/Hardware Checkout (06/03)
- Flight Test Execution (8/03)

Pilots/Test Sessions

- Total time for one evaluation pilot estimated to be 2 days :
 - 4 TP x 5 SD = 20 displays
 - 20 display x 3 scenario = 60 RUNS
 - 60 runs x .2 hours = 12 hours
 - 12 + 4 hours questioners = 16 hours = 2 working days
- Evaluation pilot population will be a mix of pilots similar to TP-HDD experiment, total of 27+?
 - 14 GA pilots, low time
 - 6 GA pilots, IFR-rated, low time
 - 4 specialists, high time
 - 3 Juneau operators, high time